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Abstract
We derive a functional relationship between the mean first passage time
associated with the concurrent binding of multiple transcription factors (TFs)
at their respective combinatorial cis-regulatory module sites (CRMs) and the
number n of TFs involved in the regulation of the initiation of transcription of
a gene of interest. Our results suggest that the overall search time τs that is
required by the n TFs to locate their CRMs which are all located on the same
DNA chain scales with n as τs ∝ nα where α ∼ (2/5). When the jump size
k that is associated with the dynamics of all the n TFs along DNA is higher
than that of the critical jump size kc that scales with the size of DNA N as
kc ∼ N2/3, we observe a similar power law scaling relationship and also the
exponent α. When k < kc, α shows a strong dependence on both n and k.
Apparently there is a critical number of combinatorial TFs nc ∼ 20 that is
required to efficiently regulate the initiation of transcription of a given gene
below which (2/5) < α < 1 and beyond which α > 1. These results seem to
be independent of the initial distances between the TFs and their corresponding
CRMs and also suggest that the maximum number of TFs involved in a given
combinatorial regulation of the initiation of transcription of a gene of interest
seems to be restricted by the degree of condensation of the genomic DNA. The
optimum number mopt of roadblock protein molecules per genome at which
the search time associated with these n TFs to locate their binding sites is a
minimum seems to scale as mopt ∝ Lnα/2 where L is the sliding length of
TFs whose maximum value seems to be such that L � 104 bps for the E. coli
bacterial genome.

PACS numbers: 87.10.−e, 87.15.kj
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1. Introduction

Site-specific interaction of a protein molecule with the genomic DNA is a fundamental process
in biological physics. In prokaryotes, such as bacteria, the initiation of transcription of a given
gene of interest occurs upon site-specific interaction of the RNA polymerase (RNAP) enzyme
complex with its promoter sequence. Further the initiation of replication of the genomic
DNA starts upon the site-specific interaction of the DNA polymerase III enzyme (DNAPIII)
complex with the origin of replication sequence element. Eukaryotes such as higher plants
and animals differ from prokaryotes in the sense that the genomic DNA that is confined inside
the nucleus of the cell is packaged into higher order structures called chromosomes with the
aid of non-specifically bound histone particles. This higher order packaging is dynamic since
it must be loosened whenever the genes present in a location need to be transcribed into the
corresponding mRNA. Then the mRNA that is produced inside the nucleus is transported
to the cytoplasm via the nuclear pores present on the nuclear membrane and the translation
of mRNA into the corresponding protein polypeptide chain takes place in the cytoplasm of
the cell. Hereafter we mainly consider the site-specific interaction of the protein molecules
with those loosely packaged regions of the genomic DNA which are actively transcribed and
also free from the non-specifically bound histone bodies. Since the length of the genomic
DNA is much higher in eukaryotes, the initiation of transcription of a given gene by the RNA
polymerase II enzyme (RNAPII) complex at the corresponding promoter sequence additionally
requires the interaction of the respective transcription factors (TFs) with the corresponding
cis-acting binding sites aka cis-regulatory modules (CRMs) associated with the gene which are
also present on the same DNA chain. These cis-acting elements may be present far away from
the upstream/downstream of the promoter sequence of the gene of interest. Upon binding
with the respective CRMs, these TFs regulate the splicing [1], cell division, development and
differentiation of higher eukaryotes. The mechanism of action of these TFs on the initiation
of the eukaryotic transcription is not yet understood clearly.

According to the currently accepted picture, these TFs first interact with their respective
CRMs to form a complex (we call this complex as ETF complex for convenience).
Subsequently this ETF complex stabilizes/destabilizes the interaction between RNAPII and
the promoter sequence of the gene of interest via distal action. The mode of this distal action
is not clearly understood. There are at least two different school of thoughts [2–4], namely it
is mediated either by a one-dimensional (1D) tracking of ETF complex along DNA toward the
corresponding promoter sequence of the regulated gene or by looping out of the intervening
DNA segment that is present in between the ETF complex and promoter sequence of the gene
of interest [2–4]. The efficiency of site-specific binding of TFs with their corresponding CRMs
can be characterized by the kinetic affinity (speed) and the specificity (fidelity) of interactions.
Here the kinetic affinity indicates how fast the TF molecule locates its specific binding site
on the DNA chain which is measured in terms of the site-specific bimolecular association
rate (mol−1 s−1). The specificity of interactions indicates how best a TF molecule of interest
can differentiate its specific binding site from rest of the non-specific binding sites which is
measured in terms of differential binding free energy (��Gs−ns kcal mol−1) which is defined
as ��Gs−ns = |�Gs − �Gns| where �Gns is the free energy that is associated with the non-
specific binding and �Gs is the free energy that is associated with the specific binding. When
a given set of specific and non-specific binding sites on the same DNA competes for the same
pool of TF molecules to bind, one can derive the expression ��Gs−ns ∝ ln[cscpns/(cncps)].
Here cs and cn are the concentrations (mol) of the freely available specific and non-specific
binding sites, cps and cpns are the molar concentrations of the specifically and non-specifically
bound TFs, cp = (p0 − cps − cpns) is the concentration of the TFs which are freely available
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in the bulk solution and p0 is the total concentration of the TFs in entire system. Since the size
of the eukaryotic genomes is larger than that of the prokaryotes, the speed–fidelity negative
correlation problem arises [2] in the binding of TFs at their corresponding CRMs in the case
of eukaryotes. This means that whenever the CRM–TF system is tuned to achieve a maximum
affinity for the binding of TFs with CRMs by decreasing the non-specific-type interactions,
the fidelity of binding will be a minimum. On the other hand, whenever the CRM–TF
system is manipulated to achieve a maximum fidelity of binding with TFs by enhancing the
specific-type interactions, the kinetic affinity will be a minimum. One should note that this
affinity–specificity negative correlation arises as a consequence of the concurrent increase (or
decrease) in the affinity of the protein molecule of interest toward the non-specific binding
sites whenever the affinity for the specific binding site is increased (or decreased) [2]. Since
the number of non-specific binding sites in the eukaryotic genomes is much higher than that
of the number of specific binding sites, the TF molecule of interest tightly binds with the non-
specific DNA sequences under such higher specificity conditions and stays as such for longer
periods and it would never find its specific binding site within the physiologically reasonable
time scales [2].

It is believed that the problem of speed–fidelity negative correlation can be circumvented
by the combinatorial binding and regulation of various TFs at their respective CRMs with
cooperative-type interactions among them [2] rather than a one-TF and one-CRM mode in
eukaryotes. In the case of combinatorial regulation, instead of a single TF binding site for
a given gene there will be a sequence of overlapping and non-overlapping CRMs for many
different TFs and there will be cooperative-type interactions between the adjacently binding
TFs. Here the cooperative-type interactions indicate the protein–protein interactions between
the adjacently binding TFs along the sequentially located CRMs that in turn stabilize the ETF
complex. When all these TFs in a given combination assemble at their respective CRMs
associated with the gene of interest, the ETF complex is formed and subsequently this ETF
complex enhances the initiation of transcription of the associated gene via distal action. Here
one should note that the cooperative-type interactions among the adjacently bound TFs occur
only upon the arrival of the respective TFs at their CRM binding sites. It has been argued that
the combinatorial-type binding of various TFs with cooperative-type interactions between the
adjacently bound TFs on the same DNA increases the fidelity of binding without decreasing
the kinetic affinity. In other words, different combinatorial subsets of a given set of TFs can
efficiently regulate many different genes with the same kinetic affinity as that of a one-TF
one-binding-site mode but with higher fidelity than the same. Although these cooperative
effects can increase the specificity of binding of TFs at their combinatorial CRMs, depending
on the initial positions of these TFs on the DNA chain and the number of such combinatorial
TFs involved in the regulatory process, the speed of searching of TFs for their combinatorial
binding sites may be significantly retarded.

One can demonstrate this issue with the following example. Consider a combination of
four TF-binding sites ‘1234’ which are all sequentially located along the DNA chain that act
as CRMs for the promoter of a given gene of interest. Assume that the corresponding TF
protein molecules are ‘a’, ‘b’, ‘c’ and ‘d’. Here the TF protein ‘a’ will bind at the target
position ‘1’ and ‘b’ will bind at position ‘2’ and so on. Further, the TF protein ‘a’ can interact
with ‘b’, whereas ‘b’ can cooperatively interact with the adjacently bound ‘a’ and ‘c’ and so
on. When all these four TFs ‘abcd’ assemble at their respective binding positions ‘1234’,
the formation of ETF complex takes place that finally interacts with the RNAPII-promoter
complex via distal action which results in the initiation of transcription of the corresponding
gene. Assume that already all these TFs are non-specifically bound with the DNA chain and
they are currently all searching for their CRMs via 1D diffusion dynamics along DNA. If the
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interactions between these TFs are cooperative type and the binding energies of all the TFs are
identical, then the specificity associated with the interaction of these combinatorial TFs ‘abcd’
with their binding sites ‘1234’ will be cumulative and it will be at least four times higher than
that of a single TF-binding interaction. This follows from our definition of specificity and
also from the fact that the free energies associated with the combinatorial binding of all these
four TFs with their respective CRMs in the presence of non-specific binding sites are additive
and the free energies associated with the cooperative-type protein–protein interactions among
TFs will also be added up to this overall free energy of stability of the ETF complex. At
the same time, the speed of assembling of such combinatorial complex ‘abcd’ at sequential
locations ‘1234’ strongly depends on the initial positions of the TFs on the DNA chain. When
the initial positions of these TFs are in the order such as ‘abcd’ with respect to their sequential
binding sites ‘1234’, the speed will be higher than that of a random initial configuration on the
DNA chain such as ‘badc’. Clearly a crossing dynamics of TFs over other TFs is required for
cases such as ‘badc’ to form the final complex ‘abcd’ at the sequential binding sites ‘1234’.
In this particular situation, the TF ‘b’ must cross ‘a’ and TF ‘d’ must cross ‘c’ to form the
final ‘abcd’ complex on the sequential binding sites ‘1234’. When the TFs slide on the DNA,
crossing dynamics is not allowed and the time that is required for presorting a random initial
configuration into an ordered configuration is infinite. This means that hopping, jumping
and inter-segmental transfer dynamics of TFs are strictly required for the assembly of TFs at
their corresponding CRMs. Let us assume that the initial distances of these TFs from their
binding sites are ηa , ηb, ηc and ηd . When a sequential and parallel binding of all the TFs is
warranted, the total search time τs associated with the finding of the combinatorial positions
‘1234’ by the respective TFs ‘abcd’ will depend on the longest initial distance of TFs from
their CRMs as τs ∝ max(ηa, ηb, ηc, ηd). In this regard there are many open questions which
need to be answered. (a) How does the mean first passage time (MFPT) associated with the
binding of multiple TFs at their corresponding CRMs depend on the number of TFs in that
combination and their relative initial positions on the DNA chain? (b) Is there any restriction
on the maximum possible number of such TFs in a given combination in eukaryotes? (c)
To what extent the spatial organization of the DNA chain can enhance the MFPT associated
with the combinatorial binding of TFs? In this paper using a combination of theoretical and
simulation tools we will answer these questions in detail.

2. Theory

We assume that the TF molecules locate their respective binding sites on the genomic DNA
via a combination of one and three-dimensional diffusion dynamics as that of the standard
site-specific DNA–protein interactions [5–7]. Consider a linear DNA of N base pairs (bps)
in length with helical ends at the positions {0, N} containing a gene of interest (figure 1).
We assume that the initiation of transcription of this gene is regulated by the binding of
a combination of n TFs tf = {tf1, tf2, . . . , tfn} at the corresponding sequentially located
CRMs associated with the gene. The initial positions of the corresponding TF molecule on the
DNA chain were x̄0 = {x01, x02, . . . , x0n} and their current positions are x̄ = {x1, x2, . . . , xn}
and their corresponding CRMs are located at the positions x̄a = {xa1, xa2, . . . , xan} which
are all such that xa1 < xa2 < · · · < xan. These CRM sites are acting as absorbing
boundaries for the dynamics of the respective TF molecules. Here we also assume that
{x̄0, x̄, x̄a} ∈ [0, N ] and when i �= j we have xi �= xj due to the excluded volume effect.
Upon all the n TFs in a given combination finding their respective CRMs, assembly of the
ETF complex completes and subsequently the initiation of transcription of the gene of interest
occurs.
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  x01     x02    x03    x04           x1      x2      x3     x4

  xa1     xa2     xa3 xa4

V = +∞ V = +∞

V = -∞

DNA  tf1      tf2     tf3     tf4   tf1      tf2     tf3     tf4            

Figure 1. Various initial and boundary conditions used in the text. Here we consider combinatorial
binding of four transcription factors tf = {tf1, tf2, tf3, tf4}. The initial positions of these
TFs were at x̄0 = {x01, x02, x03, x04} and currently they are all undergoing one-dimensional
diffusion dynamics along the DNA chain at the positions x̄ = {x1, x2, x3, x4} where the positions
{0, N} are the helical ends of the DNA chain under consideration which are acting as reflecting
boundaries for all the TF protein molecules. Whenever all these TFs sequentially assemble at the
positions x̄a = {xa1, xa2, xa3, xa4} the formation of the enhancer-TF complex (ETF) completes
that subsequently results in the initiation of the transcription of the gene of interest. When the
diffusion dynamics of TFs on the DNA chain is characterized by a unit step random walk, the
dynamic reflecting boundary condition for tf1 is xl < x1 < x2 where xl = 0 is the left helical end
of the DNA under consideration and for tf2 it is x1 < x2 < x3 and so on. As a result, the CRM
binding site of tf1 will be visible to tf1 only after all the other TFs {tf2, tf3, tf4} cross x1a .

The quantity that we want to calculate here is the time τs that is required by all the
n TFs to find their respective CRMs. When all the TFs search their respective CRMs on
DNA via multiple cycles of non-specific association that is followed by a scanning of average
L bps and dissociation, the minimum time that is required by these n TFs to assemble at n
CRMs will be τs = NL−1(τL,n + τns,n) where τL,n is the average time that is required by
all the n TFs to scan L bps of DNA, τns,n is their average re-association time (s) and NL−1

is the minimum number of such association–scan–dissociation events that is required by all
the n TFs to scan the entire DNA. The non-specific association time τns will be such that
(τt/N) � τns,n � {nτt/N} depending on whether all the n TFs bind with DNA at the same
time or at different time points where τt (bps s) is the 3D diffusion controlled bimolecular
association time. When all the n TFs scan the entire DNA, the probability that is associated
with the TFs to locate their CRMs on DNA is 1. When n = 1, we find that τL,1 ≈ (6D)−1L2

(s) is the mean time [7] that is required by a single TF molecule to scan L bps of DNA where
D (bps2 s−1) is the 1D diffusion coefficient associated with the dynamics of the TF molecule
on DNA and τns,n = (τt/N). When all these n TFs independently scan the DNA chain in a
synchronized manner, we find that τL,n � τL,1. This inequality will be true when all the TFs
bind with DNA at the same time but at different locations and independently scan an average
length of L bps and then they dissociate at the same time. This is an extreme situation where
the association–scan–dissociation cycles of all the n TFs are temporally synchronized. Here
the increase in τL,n is mainly the consequence of retarding effects of adjacently moving TFs
on the dynamics of a given TF due to spatial confinement and dynamic reflections. On the
other hand when all the n TFs scan the entire DNA in an asynchronous manner we find that
τL,n � {nτL,1} and τns,n � (nτt/N). This inequality will be true when all the n TFs bind with
DNA at different locations at different time points and scan L bps at non-overlapping time
intervals and they dissociate at different time points. This is another extreme situation where
the association–scan–dissociation cycle of one TF molecule is temporally not overlapping
with that of another TF molecule. Upon combining both these inequalities, we find that
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τL,1 � τL,n � {nτL,1}. In the following sections we will show that this inequality is indeed
true and we also derive an expression for τL,n.

The presorted initial configuration of TFs as x01 < x02 < · · · < x0n is necessary when
all the TFs scan the DNA chain by sliding dynamics where a given TF is not allowed to jump
across other TFs and therefore the time that is required to sort all the n TFs starting from
a random initial configuration to the right initial order is infinite. We define this presorted
initial configuration as x̄0 → x̃0. The presorted initial condition may not be true in real
in vivo situations since the initial positions of the TF protein molecules of our interest in a
given combination on the genomic DNA will be a random one. One should also note that
in real situations the DNA chain will be in a condensed state that allows various facilitated
dynamics such as hopping and inter-segmental transfers via ring-closure events which in turn
allow the crossing dynamics of TFs over other TFs. Prior to the assembly of these TFs at their
respective CRMs, these TF molecules independently undergo many cycles of association–
scan–dissociation events. This means that though all the n TFs start their search for their
combinatorial CRMs with a presorted initial order, such order will be lost in the subsequent
cycles of association–scan–dissociation events and the overall search time will be almost
independent of their initial configuration as well as their arrival times on DNA.

The cooperative-type protein–protein interactions between the adjacently binding TFs can
occur only after the arrival of the respective TFs at their corresponding CRMs. This means
that the search time (inverse of this search time is the ‘on rate’) associated with the binding
of TFs at their respective CRMs is independent on the cooperative-type interactions between
the adjacently binding TFs. However, the residence time (inverse of this residence time is the
‘off rate’) associated with the site-specifically bound TFs will be strongly influenced by
the cooperative-type interactions between the adjacently binding TFs that in turn enhance
the specificity of the site-specific interactions. Here we mainly consider the search times
associated with the assembly of all the combinatorial regulatory TFs at their respective CRMs
and therefore we can ignore the cooperative-type interactions among the adjacently binding
TFs. In other words, this corresponds to a maximum specificity condition. One should note
that this assumption is not valid when the cooperative-type protein–protein interactions occur
among the combinatorial TFs before they arrive at their corresponding CRMs. Apparently the
cooperative-type interactions are not favored among the combinatorial TFs before they arrive at
their CRMs since such interactions would increase the size of the one-dimensionally as well as
three-dimensionally diffusing protein–protein complexes of TFs. When the dynamics of such
larger complexes is driven by the thermal energy, the increase in size of the complexes might
in turn increase the search times associated with the finding of CRMs mainly by decreasing the
overall 1D and 3D diffusion coefficients. When such interactions between these combinatorial
TFs prior to their arrival at the respective CRMs are mandatory for the biological functions,
such interactions as well as the searching dynamics of these larger TF-complexes for their
CRMs will be coupled to an active transport such actin–myosin system which in turn is driven
by the external free energy input in the form of ATP hydrolysis rather than the thermal energy.

With this background, the concurrent dynamics of n TFs which are all present on the
same DNA chain can be well described by a set of generalized Langevin equations as
{dtxi = √

Diξi,t } where xi is the position of the ith TF molecule on the DNA chain and
i = 1, 2, . . . , n. Here ξi,t are the delta-correlated Gaussian white noises with means as
〈ξi,t 〉 = 0 and variances as 〈ξi,t ξj,t ′ 〉 = δij δ(t − t ′) for all i = 1, 2, . . . , n and j = 1, 2, . . . , n

where δij is defined in such a way that δij = 0 for i �= j , δij = 1 for i = j and Di is the
1D diffusion coefficient associated with the dynamics of the ith TF molecule along DNA.
We define the average 1D diffusion coefficient as D. Here we have assumed that the mean
force originating from the resultant non-specific electrostatic interactions [1, 2, 5–7] between
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the positively charged amino acid side chains of the DNA binding domains (DBDs) of TFs
and the negatively charged phosphate backbone of the DNA helix will be comparable [7] with
that of the thermal free energy (∼0.591 kcal mol−1 at 298 K) in the presence of intervening
water molecules at the DNA–protein interface. The dynamics of the protein molecule will be
generally confined within the capturing domain that is formed by this electrostatic attractive
force field. As a result, one can assume the helical ends of the DNA chain as reflecting
boundaries for the 1D diffusion dynamics of the TF molecule. The corresponding Fokker–
Planck equation (FPE) associated [7, 8] with the set of such coupled Langevin equations that
describe the temporal evolution of the probability density function Pn(x̄, t |x̄0, 0) which is
associated with the simultaneous observation of these n TFs at the DNA positions x̄ at time t,
which were all started from the DNA positions x̄0 at time t = 0, can be written as follows:

∂tPn(x̄, t |x̄0, 0) =
n∑

i=1

(Di/2)∂2
xi
Pn(x̄, t |x̄0, 0). (1)

Here the initial condition is Pn(x̄, 0|x̄0, 0) = ∏n
i=1 δ(xi − x0i ) and the boundary conditions

vary depending on the type of TF dynamics. When the TF molecules search for their CRMs
via sliding dynamics on the DNA chain, the presorted initial condition x̄0 = x̃0 is necessary
and the boundary conditions are given as follows where i = 1, 2, . . . , n:

[Pn]x̄=x̄a
= [

∂x1Pn

]
x1=0 = [

∂xn
Pn

]
xn=N

= [
∂xi

Pn

]
xi=xi−1,i>1 = [

∂xi
Pn

]
xi=xi+1,i<n

= 0. (2)

Here the absorbing boundary condition is defined such that whenever all the n TFs
simultaneously find their respective CRMs as x̄ → x̄a where xi = xai for all i = 1, 2, . . . , n,
we have Pn = 0. The MFPT Tn(x̄0) associated with the simultaneous finding of all the
combinatorial CRMs x̄a by the respective n TFs which all started from the presorted positions
x̄0 on the DNA chain obeys the following backward-type FPE with similar boundary conditions
[7, 8] as given by equation (2).

n∑
i=1

(Di/2)∂2
xi
Tn(x̄) = −1. (3)

Here the boundary conditions for equation (3) can be explicitly given from equation (2) as
follows:

[Tn]x̄=x̄a
= [

∂x1Tn

]
x1=0 = [

∂xn
Tn

]
xn=N

= [
∂xi

Tn

]
xi=xi−1,i>1 = [

∂xi
Tn

]
xi=xi+1,i<n

= 0. (4)

The general solution to equation (3) can be written as follows:

Tn(x̄) = −(
x2

1

/
(2D1)

) (
2 +

n∑
i=2

αiDi

)
+ (1/2)

n∑
i=2

αix
2
i + (1/2)

n∑
i=1

(βixi + γi). (5)

Here αi , βi and γi are arbitrary constants which need to be determined from the appropriate
boundary conditions given by equation (4). When there is only one TF in the system which
searches for its CRM binding site via sliding dynamics along the DNA chain, n = 1 and the
particular solution to equation (3) can be given as T1(x10) = −x2

10D1 + β1x10/2 + γ1 where
β1 = 0 and γ1 = (

x2
1a

/
D1

)
. When n > 1, the general properties of this particular solution to

equation (3) can be derived as follows. Since we have x̄0 < x̄ < x̄a with a presorted x̄0 = x̃0,
the TF tf1 can find its CRM binding site that is located at xa1 only after all the other TFs have
already crossed xa1. As a result, the total time that is required by all the n TFs to cross xa1 and
subsequently assemble at their corresponding CRMs which are all located at the positions x̄a

starting from x̄0 should be such that Tn(x̄0) � {nT1(x01)}. This follows from the fact that the
initial distances ηi = |x0i − xai | of the TFs from their CRM binding sites are all the same as
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ηi = ηj in the current setting. Here one should note that Tn(x̄0) is the time that is required by
the n TFs to scan a DNA segment of length ηi and we have not considered the pure enhancing
effects of other (n−1) TFs on tfn and the pure retardation effects of other (n−1) TFs on tf1 in
this calculation [9]. When ηi = L, we find Tn(x̄0) = τL,n. Consequently Tn(x̄0) � {nT1(x01)}
will be modified to a generalized inequality as Tn(x̄0) � {nαT1(x01)} where α is an exponent
such that 0 < α � 1. This result is in line with our predicted inequality τL,1 � τL,n � {nτL,1}
based on scaling arguments. Using stochastic simulation of equation (3) we will show in the
following sections that this inequality is indeed true when n � nc where nc ∼ 20 is some
critical number of TFs in a given combination and when n > nc the exponent becomes as
α > 1.

3. Results

For the simulation purpose, we consider a linear DNA chain with a length of
N = 150 bps. To start with, we assume that there is a non-specifically bound TF protein
molecule located at the left helical end x01 = 0 at time t = 0 and currently it is searching
for its CRM binding site that is located at the position xa1 = 25 via 1D diffusion dynamics.
We set this 1D diffusion coefficient associated with dynamics of the TF molecule as D1 = 1.
This is a typical unit-step 1D one-walker problem and the corresponding equation (3) can be
solved exactly as follows. When there is only one TF in the system, we have n = 1 and
equation (3) can be written as d2

x1
T1(x1) = −2 with the absorbing boundary condition at the

position of CRM as [T ]x1=x1a
= 0 and the reflecting boundary conditions [7, 8] at the helical

end of the DNA chain as
[
dx1T1

]
x1=0 = [

dx1T1
]
x1=N

= 0. The MFPT associated with this
single TF to locate its CRM which is present at xa1 starting from x01 by sliding dynamics can
be given as T1(x01) = (

x2
a1 − x2

01

)
. Here the MFPT is measured in terms of the dimensionless

number of steps taken by the TF molecule to locate its CRM. In the present case we have
T1(0) = 625 since we have set the initial position of TF on DNA as x01 = 0. One can also
derive a similar expression whenever the TF molecule starts the search for its CRM by sliding
on DNA anywhere from the interval (xa1, N) as T1(x01) = (

x2
a1 − x2

01

)
+ 2N(x01 − xa1).

With this background we assume that there are n TFs which are all located at the sequential
initial positions on the same DNA as x01, x01 + 1, . . . , x01 + n and currently trying to locate
their respective CRMs by sliding dynamics which are all located sequentially on the same
DNA chain as xa1, xa1 + 1, . . . , xa1 + n in such a way that the inequalities (xa1 + n) � N and
(x01 + i) < (xa1 + i) are true for all i = 1, 2, . . . , n. As we have shown in the previous
section, the overall MFPT associated with the finding of all the n CRMs by all the n
TFs by sliding dynamics should be an increasing function of n that is mainly due to the
dynamic reflections and spatial confinement which are imposed on the dynamics of a given
TF molecule at the boundaries of other adjacently diffusing TFs along the same DNA chain.
To check this proposition, we carried out the stochastic numerical simulations of the system of
equations (1)–(3) with the settings as (x01 = 0, xa1 = 25, N = 150 and Di = 1 for all the
values of i = 1, 2, . . . , n and unit base pair step size as k = 1 for a sliding dynamics) at
various n values.

Results of this simulation study showed the following scaling relationship (figure 2) for
the overall MFPT (Tn(x̄0)) that is associated with the binding of all the n TFs with their
respective CRMs:

Tn(x̄0) ≈ nαT1(x01). (6)

One should note that equation (6) is in line with the results obtained in the theory section that
is based on the scaling arguments. Here the MFPTs at various n values were computed by
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Figure 2. Dependence of the mean first passage time Tn(0, 1) (measured as the dimensionless
number of steps) associated with the finding of n binding sites by n TFs on n when the
jump size k = 1. The simulation settings are as follows. Here the size of DNA template
is N = 150, initial positions of TF proteins are set as x0i = i and the corresponding
CRM binding sites are set at xai = χ + i where i = 1, 2, . . . , n and χ = {30, 40, 50, 60}
so that the initial distances of TFs from their CRM binding sites take the values μ =
{30(red/bottom), 40(royal/next to bottom), 50(wine/below top), 60(cyan)/top}. The MFPT
was computed by averaging over 105 trajectories of all TFs. For n = 1 and the initial distance
μ = 50, we observed the MFPT of T1(0, 1) ∼ 502. For other values of n we observed the
scaling relationship Tn(0, 1) = T1(0, 1)nα . We observed the exponent α ≈ (2/5) with respect to n
irrespective of the initial distance μ. Solid lines are the linear least-squares fitting with the log–log
transformed data (R2 = 0.99) that yielded the exponent α ≈ 0.39 ± 0.005 for μ = 50.

averaging over 105 trajectories of all the n TFs on the same DNA chain. When n = 1 and
the initial position of the TF molecule on the DNA chain is set as x01 = 0 in equation (6),
we recover the result for the one-walker problem as T1(0) = x2

a1 = 625. The linear least-
squares fitting of the log-transformed MFPT data at various log-transformed n values yielded
the parametric estimate for the exponent α as α ∼ (2/5). This value of the exponent α seems
to be independent (figure 2) of the initial positions x̄0 and the distances μi = |x0i − xai | of
various combinatorial TF molecules from their corresponding CRMs which are all located on
the same DNA chain.

To understand the effect of the spatial organization of the template DNA on Tn(x̄0), we
carried out the simulations of equations (1)–(3) at various jump size values (k > 1). When
k > 1, the presorted initial configuration of TFs is not necessary. Here the unbiased random
jump size k means that the random walker which started from the lattice position x can be found
(jump) anywhere inside the interval (x − k, x + k) in the next step with equal probabilities
as wi = 1/(2k). Under this condition D1 becomes [7–10] as D1 = ∑k

i=−k i2
/
(2k) in

the dimensionless form and for an arbitrary jump size distribution function we find that
D1 = ∑k

i=−k i2wi . Clearly when k = 1, we have D1 = 1 and when k > 1, for wi = 1/(2k)

we find that D1 = 6−1(k + 1)(2k + 1). We will show in the later sections that the equal
probability assumption wi = (2k)−1 for the distribution of hopping lengths is indeed valid
under in vivo conditions when the jump size k is less than that of the critical jump size value
as k � kc where kc scales with N as kc ∝ N2/3 [9, 10]. This scaling law is true whenever the
electrostatic attractive field is strong enough to keep the TF molecule under non-specifically
bound conditions until it scans the entire DNA. When the TF molecule scans only L bps
and then dissociates, the scaling law becomes as kc ∝ (NL)1/3. Since D1 increases with k
as D1 ∝ k2, one can conclude that the scan time for L bps of DNA decreases with k. We
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also learn from the earlier studies [9, 10] that the search time or the scan time for L bps
cannot be enhanced further by increasing the jump size beyond this critical value kc. Here
one should recall the fact that the average jump size k is positively correlated with the spatial
condensation and degree of super-coiling of DNA. This means that the search time that is
required by a TF molecule to locate its CRM on DNA can be enhanced by increasing the
degree of condensation of DNA only within certain limit. The boundary conditions which
were used for the numerical simulation of the system of equations (1)–(3) under random jump
conditions for all i = 1, 2, . . . , n can be given as follows:

[Pn]x̄=x̄a
= [

∂x1Pn

]
xi=0 = [

∂xn
Pn

]
xi=N

= [
∂xi

Pn

]
xi=xj ,i �=j

[Tn]x̄=x̄a
= [

∂x1Tn

]
xi=0 = [

∂xn
Tn

]
xi=N

= [
∂xi

Tn

]
xi=xj ,i �=j

}
= 0. (7)

Apart from the reflecting boundary conditions in equation (7), the TF molecules are also
allowed to jump across other TF molecules provided that there is no other TF molecule
present at the target position of the jump event. Assume that there are only two TF molecules
in the systemnamely ‘a’ and ‘b’. Consider that the TF molecule ‘a’ is located at the boundary
of other TF molecule ‘b’ where the positions of ‘a’ and ‘b’ on DNA are respectively x and
x + 1. When the jump size is k, the allowed target positions of the jump events for the
TF molecule ‘a’ with respect to the ‘b’ molecule are such that x − k, x − k + 1, . . . , x − 1
andx + 2, x + 3, . . . , x + k. The position of ‘b’ acts as a reflecting boundary for the transition
such as x → x + 1 of ‘a’. These conditions further ensure that two TF molecules never
occupy the same location on DNA (excluded volume effect). When the random jumps were
allowed in the dynamics of all the n TFs with a jump size of k bps, we found from numerical
simulations that the exponent α and the pre-exponential term in the expression of MFPT as
given by equation (6) were strongly dependent on k as follows:

Tn(x̄0, k) ≈ T1(x01, k)nαk . (8)

Here one should note from equation (6) that α1 ∼ (2/5) for k = 1. When n = 1, we find
the limit for the pre-exponential term from the earlier studies [9] as lim k�kc

T1(x01, k) → N ,
where kc ∼ 2N2/3 is the critical jump size associated with the dynamics of an individual TF
molecule. When n > 1 and k is such that k � kc, our simulation results show (figure 3) that
the scaling exponent αk in equation (8) is almost independent of k and we observed a limiting
relationship as Tn(x̄0, kc) ≈ Nnα1 . The linear least-squares fitting of the log–log transformed
MFPT data at various n values again yielded a parametric estimate of this critical exponent
as αkc

= α1 ∼ (2/5). When k < kc, the scaling exponent αk in equation (8) seems to be
strongly dependent on k and also the number of TFs n in a complicated manner. When k < kc,
we observed a point of inflection in Tn(x̄0, k) with respect to n such that (figure 4) when
n < nc where nc is some critical number of TF molecules in the combinatorial regulation, the
exponent α was such that (2/5) < α < 1. When n > nc, we observed the exponent such
that α > 1. The derivative plot (figure 5) of Tn(x̄0, k) with respect to n clearly demonstrated
this inflection behavior. It appears that irrespective of the jump size k, the first derivative
of Tn(x̄0, k) showed a monotonic decrease until the critical value of n is reached as nc ∼ 5
and the point of inflection occurred in a broad range as 5 < n < 20. When n > nc, then
dnTn(x̄0, k) showed a further increase (when k < kc) or a decrease (when k � kc) depending
on the jump size k. The critical number of TF molecules in the combinatorial regulation nc

seems to be independent of the initial distances μi and also the total size of the DNA chain N
under consideration (figure 5).

It follows from equations (6) and (8) that τL,n ∼ nατL,1. This means that τL,1 � τL,n �
{nτL,1} as we have predicted in the theory section using hand waving arguments. When there
is a coherence in the dynamics of all the n TFs, while they are non-specifically interacting with
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Figure 3. Dependence of the mean first passage time Tn(0, k) (measured as the dimensionless
number of steps) that is associated with the finding of n CRM binding sites which are all located
sequentially on the same DNA chain by n TFs on the jump size k. Here the size of DNA template
is N = 150, initial positions of TFs on DNA are set at x0i = i and the corresponding binding sites
are located at xai = 25 + i where i = 1, 2, . . . , n. The critical jump size for the DNA length of
N = 150 is kc = 2 × 1502/3 ≈ 57. When the jump size k was such that k > kc , we observed
the scaling relationship Tn(0, kc) ≈ Nnα where the exponent was α ∼ (2/5). The MFPT was
computed by averaging over 105 trajectories of TFs. The linear least-squares fitting (R2 = 0.99) of
the log–log transformed MFPT data for jump size k = 58 yielded the exponent α ≈ 0.38 ± 0.005.
For the jump size k < kc we observed a point of inflection such that when n < 20 we observed the
exponents in the range of 0.4 < α < 1 and when n > 20 we observed the exponent α > 1.
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Figure 4. Dependence of the mean first passage time Tn(0, k) (measured as the dimensionless
number of steps) that is associated with the finding of n CRM binding sites by n TFs on the jump
size k at various n values. Here the size of DNA template is N = 150, initial positions of TFs
on DNA are at x0i = i and the corresponding binding sites are located at xai = 25 + i where
i = 1, 2, . . . , n. The MFPT was computed by averaging over 105 trajectories of TFs. Here the
point of inflection occurs in a broad range of n values as 5 < nc < 20.

DNA, then we find τns,n = τns,1. Upon substituting the expression for τL,n in the expression
for τs we find that τs ∼ NL−1(τL,1n

α + τns,1). This result clearly suggests that the presence
of many TFs on the same DNA chain ultimately decreases the overall 1D diffusion coefficient
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Figure 5. Derivative plot of function Tn(0, k) (measured as the dimensionless number of steps)
with respect to n that clearly shows the point of inflection. Simulation settings for the solid lines
are as follows. Here the size of the DNA template is N = 150, initial positions of TFs are at
x0i = i and the corresponding CRM binding sites are located at xai = 25 + i where i = 1, 2, . . . , n

so that the initial distance is μ = 25. Simulation settings for the dotted lines are as follows. Here
the size of DNA template is N = 250, initial positions of TFs are at x0i = i and the corresponding
binding sites are located at xai = 50 + i where i = 1, 2, . . . , n so that the initial distance is μ = 50.
The MFPTs were computed by averaging over 105 trajectories of TFs. The critical jump size for
N = {150, 250} was kc = 2N2/3 ∼ {57, 81} and therefore two different jump sizes k were tried as
k = {26 < kc, 100 > kc}. This result clearly demonstrates that the inflection point is independent
of the distance between the initial and CRM binding positions of TFs and also the size of the DNA
chain under consideration.

associated with the dynamics of TFs due to confinement of the search space and dynamic
reflections at the boundaries of adjacently diffusing other TFs [9] on the same DNA chain that
results in an increase in the overall target finding time irrespective of the jump size. Upon
solving the equation ∂Lτs = 0 for L, we find the optimum sliding length that is required
by the TFs to achieve the overall minimum [9, 10] search time as Lopt = √

6Dτns,1n−α .
Upon substituting this back into τs we find the required overall minimum search time as
τs,min ∼ 2N

√
τns,1nα/(6D). When k < kc and n < nc, the maximum value of α is α = 1

and the maximum value of τns,n is τns,n = nτns,1. This means that the maximum value of the
search time that is optimized for the sliding length scales as τs,max ∝ n. Using these results
one can derive the scaling relationships for the number of TFs in the combinatorial regulation
as τs,min ∝ nα/2 and Lopt ∝ n−α/2.

To investigate the anomalous behavior of the system of n TFs, we plotted the normalized
positional variances σ 2

x at various values of τB where τB is the ratio between the number of
random walk steps and the number of steps required to attain the ‘steady-state’ positional
variance σ 2

x,s . Here we call it as ‘steady state’ since the system under consideration is a
non-equilibrium one and the positional variance σ 2

x starts to decline beyond this steady state
due to absorption of the TF molecules at their corresponding CRM binding sites. Figure 6
clearly suggests the presence of anomalous-type diffusion when the jump size is k = 1 which
is somewhat similar to that of the single file diffusion problem addressed in the literature [11].
To simplify the current problem we denote the TF molecule that is closest to the combinatorial
binding sites as the ‘outer’ one and the remaining TFs are the ‘inner’ ones. Results suggest
that except the ‘outer’ TF molecule all the other ‘inner’ TF molecules show a sub-diffusion
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Figure 6. Anomalous-type diffusion observed when the jump size associated with the dynamics
of TFs toward their combinatorial binding sites on DNA is k = 1. Here the total size of the DNA
is 150 bps, σ 2

x is the normalized positional variance and τB is the ratio between the number of
random walk steps and the number of steps that is required to attain the steady-state positional
variance. There are five TF molecules, namely tf = {a, b, c, d, e}, whose initial positions were at
x = {1, 2, 3, 4, 5} and the combinatorial binding sites are at x = {25, 26, 27, 28, 29} whereas the
helical ends x = {0, 150} are reflecting boundaries. Here the TF molecule ‘e’ is the outer one and
all others are inner ones. Clearly the outer one shows a super-diffusion σ 2

x ∝ τ
χ
B where χ > 1 and

all the other inner ones show a sub-diffusion-type dynamics σ 2
x ∝ τ

χ
B where χ < 1.

which means that σ 2
x ∝ τ

χ

B where χ < 1 and the outer one shows the super-diffusion which
means that σ 2

x ∝ τ
χ

B where χ > 1. This anomalous-type behavior decreases as the jump
size k increases (figure 7). This is reasonable since as k increases the confinement effects of
molecular crowding and the dynamic reflections which are the sources of anomalous behavior
decrease which in turn results in the normal-type diffusion which means that σ 2

x ∝ τ
χ

B where
χ = 1.

4. Discussion

So far we have assumed that the system contains only the set of combinatorial TFs of our
interest which is not true in the real in vivo situation. There will be different classes of other
protein molecules concurrently undergoing 1D diffusion dynamics along with the TFs of our
interest on the same DNA chain. As a result, the dynamical trajectories of the set of TFs
of our interest will be always interfered by other classes of protein molecules (roadblocks).
Recently effects of such roadblock protein molecules on the dynamics of a given TF protein
molecule have been studied in detail [12]. The main conclusion of this theoretical study is that
the presence of such roadblock protein molecules induces more association–scan–dissociation
events in the dynamics of the TFs, that in turn results in the existence of an optimum number
of such roadblock protein molecules mopt per genomic DNA, at which the overall minimum
search time associated with the site-specific binding of these TF molecules with the CRMs
is attained. Further calculations showed that [12] mopt should be in the order of mopt � 104

for the E. coli genome of size N ∼ 4.6 × 106 bps. This result agrees well [13] with the total
number of protein molecules ∼3 × 104 that is found on the genomic DNA of E. coli in the
log-phase of the growth kinetics.

One can also derive this result in a way different from [12] as follows. Consider the
1D diffusion-mediated search dynamics of a single TF protein molecule for its CRM in

13



J. Phys. A: Math. Theor. 43 (2010) 195003 R Murugan

10-2 10-1 100 101

10-3

10-2

10-1

100

σ
2 x

τ
B

a
 b
 c
 d
 e

Figure 7. Normal-type diffusion observed when the jump size associated with the dynamics of
TFs toward their combinatorial binding sites on DNA is k � 1. Here the total size of the DNA is
150 bps, σ 2

x is the normalized positional variance and τB is the ratio between the number of random
walk steps and the number of steps that is required to attain the steady-state positional variance.
There are five TFs, namely tf = {a, b, c, d, e}, whose initial positions were at x = {1, 2, 3, 4, 5}
and the combinatorial binding sites are at x = {25, 26, 27, 28, 29} whereas the helical ends
x = {0, 150} are reflecting boundaries. Here the TF molecule ‘e’ is the outer one and others are
inner ones. Clearly both the outer and inner ones show a normal diffusion σ 2

x ∝ τ
χ
B where χ = 1.

the presence of m one-dimensionally diffusing other classes of roadblock protein molecules
on the same DNA chain. Under this condition the 1D sliding lengths L of the TFs
of our interest rescales [14] as L → Lm−1. As a consequence, the expression for
the overall search time τs that is associated with the binding of all the TFs of interest with the
CRMs that we have derived in the previous sections becomes τs = NmL−1(τL,1m

−2 + τns,1).
Figure 8 shows the plot of this overall search time τs → τs(m) as a function of m at various
values of the sliding lengths L for n = 1 and figure 9 shows the 3D surface plot of the search
time τs → τs(m,L) as a function of both the variables m and L. When n = 1, upon solving
∂mτs = 0 for the variable m, we find the optimum number of other classes of roadblock protein
molecules that is required to minimize the search time associated with the binding of the TF
of our interest with its corresponding CRM as mopt = √

τL,1/τns,1. Upon substituting the

expressions τL,1 = (6D)−1L2 and τns,1 = (τt/N) in mopt we find that mopt = L
√

N(6Dτt)−1.
When n > 1 we find that mopt = √

τL,n/τns,n. When all these n TF molecules non-specifically
bind with DNA at different time points, we find τns,n ≈ nτns,1 and τL,n ≈ nατL,1. This means
that mopt ∝ n(α−1)/2. On the other hand, when all these n TF molecules non-specifically bind
with DNA at the same time points, we find τns,n ≈ τns,1 and this means that mopt ∝ nα/2 under
such conditions.

From the literature we find that the volume of an E. coli bacterial cell is Ve ∼ 10−18 m3

[15], the size of the E. coli genome is N ≈ 4.6 × 106 bps [16] and there are at least N

non-specific binding sites for the TF molecule of our interest whose copy number tfc inside
the E. coli cell is in the order of tfc ∼ 102. Using these values, the three-dimensional
diffusion controlled bimolecular collision time τt (mol s) can be calculated as follows. The
concentration of a single non-specific binding site on the DNA chain as well as a single TF
molecule inside the E. coli cell volume is ∼2×10−9 M. When there is only one binding site on
the DNA chain and only one TF protein molecule inside a cellular volume of Ve ∼ 10−18 m3,
the maximum achievable 3D diffusion controlled collision rate between a single non-specific
binding site (bps) of the DNA chain and a single TF protein molecule of our interest can
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Figure 8. Variation of the search time τs (measured in seconds) associated with the finding of the
CRM binding sites by transcription factor (TF) of our interest as a function of the m (dimensionless
numbers) roadblock protein molecules present on the same DNA chain at various one-dimensional
sliding lengths L = {1, 5, 10, 15} × 103 bps. In the case of the bacterium E. coli, there are at least
N ∼ 4.6 × 106 non-specific binding sites for a given TF molecule whose copy numbers inside the
E. coli cell volume of Ve ∼ 10−18 m3 will be in the order of tfc ∼ 102. From our theory we find
τs = NmL−1(τL,1m

−2 + τns,1) where τns,1 ∼ 6×10−9 (s) is the time required by the TF molecule
of interest to make a non-specific contact with the DNA chain via three-dimensional diffusion
controlled routes and τL,1 = L2/(6D) is the time required by the TF molecule to scan L bps of
the DNA chain. Here D ∼ 4 × 105 bps2 s−1 [17, 18] is the one-dimensional phenomenological
diffusion coefficient associated with the dynamics of the TF protein molecule on the DNA chain.
Using these numerical values in the expression for the target finding search time τs we find that
τs ≈ mL−1(0.21 L2m−2 + 0.028) (seconds).

L (bps) m

( )s sτ

Figure 9. Thee-dimensional surface plot of the overall search time τs (seconds) associated with
the finding of the CRM binding site by the TF protein molecule of interest on the DNA chain as a
function of the numbers m (dimensionless numbers) of a roadblock protein molecule present on the
same DNA as well as the sliding length L (bps). For an E. coli cell volume of Ve ∼ 10−18 m3 the
explicit expression for the search time becomes as τs ≈ mL−1(0.21 L2m−2 + 0.028) (seconds). In
this calculation we have assumed that there are at least N ∼ 4.6 × 106 non-specific binding sites
for a given TF molecule whose copy numbers inside the E. coli cell volume will be in the order of
tfc ∼ 102.

be given as kt ∼ 0.4 (bps−1 s−1), where we have used the value of 3D diffusion controlled
collision rate limit when there are molar concentrations of both the protein molecule and its
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respective binding site on the DNA chain as ∼108 (mol−1 s−1). This limiting value transforms
under the nano-molar (nM) concentrations of the reactants as ∼10−1 (nM−1 s−1). Since the
intracellular concentrations of a single DNA binding site and a single TF protein molecule are
in the range of ∼2 nM, without loss of generality one can write nM → bps and we finally
arrive at the result kt ∼ 0.4 (bps−1 s−1). Upon rescaling this three-dimensional diffusion
controlled collision rate as kto → (kt × tfc × N) (s−1) for tfc ∼ 102 copies of TF molecules
and N ∼ 4.6 × 106 non-specific binding sites which are present on the genomic DNA inside a
cellular volume of Ve, one finds that kto ∼ 1.8 × 108 (s−1). Using this value, one can compute
the time τns,1 that is required for the non-specific binding of a given TF molecule with the
genomic DNA inside the E. coli cell volume via 3D routes as τns,1 = (kto)

−1 ∼ 6 × 10−9(s).
From the earlier studies [17], we find the 1D diffusion coefficient that is associated with the
dynamics of TF on the genomic DNA as D ∼ 0.046 μm2 s−1 ∼ 4 × 105 bps2 s−1 where we
used the transformation rule 1 bps ≈3.4 × 10−10 m and 1 μm ≈ 2941 bps. Upon substituting
these numerical values in the expression for mopt, we finally find that mopt ∼ 8L.

One should note that the experimentally observed in vitro sliding length L that is associated
with the diffusion of lac repressor protein on a stretched DNA chain [18] ranges from ∼120
nm to ∼2920 nm. This corresponds to a range of DNA length of L ∼ (35–8588) bps. Using
these results one finds the optimum number of roadblock protein molecules which is required
to attain the minimum search time associated with the binding of a given TF of our interest
with its corresponding CRM that is also present on the genomic DNA of E. coli as mopt ∼ 7 ×
104 bps. This result is in line with the recent theoretical studies which state that the optimum
number of roadblock protein molecules per genomic DNA of E. coli should be in the order
of ∼104 [12]. The observed sliding length mentioned so far is from the in vitro studies and
one also should note that the sliding length is strongly dependent on the ionic strength of
the medium. Higher ionic strengths weaken the non-specific electrostatic attractive force
that is present at the DNA–protein interface leading to lower sliding lengths. The ionic
strength under in vitro conditions will be much lower than that of the in vivo conditions. As
a consequence, the approximate sliding length under in vivo conditions seems to be in the
order as L ∼ 102 bps and corresponding to this sliding length we find mopt ∼ 103. When
the existing number of roadblocks that is present on the genomic DNA of E. coli during the
log-phase of the growth kinetics is ∼3×104, the maximum achievable 1D sliding length Lmax

of the TF molecule of our interest on the genomic DNA can be computed from the inequality
(3 × 104) � {8Lmax} as Lmax � 104 (bps). This is in line with the maximum value of L
that is obtained for a stretched DNA by single molecule in vitro experiments [18]. When we
consider the assembly of all the n combinatorial TFs at their corresponding sequentially
located CRMs on the same DNA chain in the presence of roadblocks, it follows from
equation (6) that the time that is required for the 1D scanning of L bps of DNA by all
these n TFs rescales with n in that combination as τL,n → (τL,1n

α). Under this condition
we find the expression for optimum m as mopt = n(α−1)/2

√
τL,1/τns,1. This also means that

mopt ≈ 8Ln(α−1)/2 and Lmax � {104n−(α−1)/2}. These results also put a limit on the maximum
possible number of combinatorial TF molecules that can be associated with the regulation
of the initiation of transcription of a given gene of interest which is located on the genomic
DNA of E. coli as n ∼ 1. This result in turn directly follows from the inequality condition
Lmax � 104.

What are all the consequences of the results given by equation (8)? Here one should
recall the fact that the jump size k is directly proportional to the degree of condensation of
the DNA lattice. Whenever the degree of condensation of DNA is not enough to achieve the
critical jump size kc, our theory suggests that the number of TFs in a combination should
be limited in the range of 1 < n < 20 to avoid the exponentially growing MFPT with the
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increasing value of n. It is also interesting [1, 2] to note that the number of TFs involved in
the combinatorial regulation of the initiation of transcription of most of the eukaryotic genes
is in the range of 1 < n < 20. This observation is in line with our theoretical results. Our
theoretical and simulation results suggest that the number of TFs in a combination should fall
in the range of ∼(5–20) for an efficient TF-mediated combinatorial regulation of the initiation
of transcription of various genes under all situations. In this range of values of n, our results
suggested that dnTn(x̄0, k) will be a minimum (figure 5) especially when the jump size k is
such that k < kc. When k > kc, our results show that dnTn(x̄0, k) → 0. Here one should
note that when all the TFs are similar and also bind with the same CRM, the resultant MFPT
deceases [14] as n increases with the scaling relationship Tn(x̄0) ∝ n−2. The origin of this
scaling relationship is as follows. The time that is required by the ith TF to scan L bps of
DNA by sliding dynamics without collisions with other (n − 1) such similar TFs those are
present on the same DNA chain is given as τL,1 ∼ L2/(6D). When there are n such TFs
simultaneously performing one-dimensional scanning for the same CRM site on DNA, we
arrive at the scaling law τL,1 ∝ L2n−2 since the sliding length L rescales as L → (L/n).
One can generalize these scaling arguments to the situation where there are multiple copies of
each of n TF molecules searching for sequentially located n different CRMs binding sites as
follows. When there are θi copies of TF molecule tfi , totally there are various m̄ = ∑n

i=1 θi

TFs. Since only one molecule of tfi binds with its CRM among θi such tfi molecules at any
time, the resultant scaling for τL,n will become as τL,n ∝ τL,1n

αm̄−2. Here one should note
that the rescaling L → (L/m̄2) or L → (L/n) is valid only when the dynamics of TFs along
the DNA lattice is mainly via the 3D routes since it does not consider the retarding effects due
to the dynamic reflections [9] at the boundaries of other adjacently diffusing TFs on the TF of
interest when all these TFs are concurrently searching for the same binding site on DNA via
one-dimensional routes.

Recently many groups tried to compute the distribution of jump lengths associated with the
dynamics of protein molecules on DNA [19, 20]. Using detailed experimental studies Broek
et al [first one in 20] has shown that the 3D excursions of the protein molecules could give to
the distribution of effective jump lengths. One should note that the effective jump length is
not only influenced by the 3D excursions but also by the inter-segmental transfer dynamics via
ring closure events which is strongly influenced by the dynamics of the DNA chain. Loverdo
et al [19] has derived an expression for the probability distribution function wk of the hopping
distances k (bps) associated with the dynamics of the protein molecule on a stretched DNA
chain. Especially when k is large, their expression can be written as wk ∝ (k ln2(k))−1.
This wide tail jump size distribution seems to fit well with the experimental observations on
the 1D diffusion dynamics of the EcoRV molecule on the elongated DNA under lower salt
concentrations [21]. Lomholt et al (third one in [20]) has shown that the distribution of effective
jump lengths may even be of power-law form on long flexible DNA. One should note that these
distribution functions do not consider the various facilitating processes such as inter-segmental
transfers due to ring closure events and also the concurrent dynamics of the DNA chain. The
ring closure events are in turn driven by the condensation and spatio-temporal dynamics of
the DNA chain which in turn bring two different distal segments of the same DNA chain
closer together so that the TF molecule of our interest can be transferred from one segment
to another without getting released in the bulk solution. Under such conditions, although the
expression for the probability distribution function associated with the hopping distances is
not known, one can derive it by numerically simulating such systems. For example one can
use [22] the analogy between the self-intersection loop lengths in the theory of random walks
and the ring closure events in the theory of site-specific DNA–protein interactions. Stochastic
numerical simulations (figure 10), in line with [22], suggest that whenever the jump size k
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Figure 10. Distribution of random jump sizes k (measured in bps in the context of site specific
DNA–protein interactions) in various dimensions d. Here a polymer chain of size N = 500 units
in length is embedded in one-, two- and three-dimensional lattice boxes such that the volume
compression ratio θ = (VB/VN) is beyond the critical compression ratio θ � θc where VB is the
volume of the lattice box and VN is the volume of the polymer lattice. To compute the probability
distribution function, self-intersection loop lengths of the embedded polymer were sampled from
105 polymeric trajectories which were all starting from the origin. From the earlier studies [22]
we learn that when θ � θc the average jump size k approaches the critical jump size limit as
k → kc(N, d) ∼ 22−dN2/3 where d is the dimensionality of the lattice box under consideration.
For example θc ∼ 0.01 for d = 1 and θc ∼ 100 for d = 3. Here the jump size k is the average
of self-intersection loop lengths in various dimensions d. This is analogous to the average loop
lengths associated with the ring closure events in site specific DNA–protein interactions. One
should note that at lower values of k, the probability distribution is almost flat one. Particularly for
d = 3, we have the critical jump size limit as kc (500, 3) ∼ 32 bps and in this range the probability
distribution function is almost a flat one. This means that one can assume an unbiased random
jump condition with equal probabilities whenever k  kc (N, 3).

that is associated with the dynamics of the TF molecule on DNA is such that k  kc(N, d),
where kc(N, d) ∼ 22−dN2/3 is the critical jump size associated with the dynamics of TF that
is embedded in a d-dimensional lattice box, the probability distribution function associated
with the jump size k is almost flat in shape as wk ∝ (2k)−1 (figure 10). One should note that
the critical jump size that is associated with the dynamics of the TF molecule on the genomic
DNA is automatically attained [22] when the volume compression ratio θ of the DNA chain
inside the 3D cellular lattice box is beyond certain critical values θc as θ � θc (figure 8).
The volume compression ratio of the genomic DNA inside the cellular lattice box is defined
as θ = (VB/VN) where VB is the volume of the cellular lattice box and VN is the volume
of the embedded DNA chain. It also seems that θ of the E. coli genomic DNA is already
beyond [22] such critical limit. This means that the spatial organization of the genomic DNA
of E. coli is designed such that the jump size k that is associated with the dynamics of the
non-specifically bound TF molecule on the genomic DNA is equal to the critical jump size
limit. From numerical simulations we find that [22] the critical volume compression ratios θc

in various dimensions are θc ∼ 0.01 for d = 1 and θc ∼ 100 for d = 3. Here the jump size k can
be thought as the average of the self-intersection loop lengths of DNA which is embedded in
various d-dimensional lattice boxes. This is analogous to the average loop lengths associated
with the ring-closure events on the DNA chain which lead to the inter-segmental transfers in
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the site-specific DNA–protein interactions. Particularly when d = 3, we have kc(500, 3)∼
32 bps and whenever k is such that k  kc(500, 3) we find that the shape of the probability
distribution function associated with the hopping distances is almost a flat one (figure 10).
This means that the flat distribution assumption wk ∝ (2k)−1 for the hopping distances is
indeed valid under in vivo conditions.

5. Conclusions

In this paper, we have derived a functional relationship between the mean first passage
time (MFPT) associated with the binding of multiple transcription factors (TFs) at their
combinatorial CRM binding sites which are all located on the same DNA chain and the
number of TFs n involved in the combinatorial regulation of the initiation of transcription of
the gene of our interest. Our results suggested that the overall search time τs that is required
by n such combinatorial TFs to simultaneously assemble at their sequentially located binding
sites via 1D diffusion dynamics along the DNA chain scales with n as τs ∝ nα where the value
of the exponent is α ∼ (2/5). When the jump size k that was associated with the dynamics
of TFs along the DNA chain was higher than that of the critical jump size kc that scales with
the size of DNA as kc ∼ N2/3, we observed similar power law scaling relationship and the
exponent α. When the jump size k was less than that of the critical jump size kc, the exponent
α showed a strong dependence on both k and n. Apparently there was a critical number of
combinatorial TFs nc ∼ 20 that is required to efficiently regulate the transcription of a single
gene of interest below which the exponent α was such that (2/5) < α < 1 and beyond which
the exponent α was such that α > 1. These results seem to be independent of the initial
distance between the TFs and their cis-acting binding sites which are present on the same
DNA chain and also suggest that the maximum number of the TF protein molecule involved in
a given combinatorial regulation of the initiation of transcription of a gene of interest seems to
be strongly restricted by the degree of condensation of the genomic DNA. Our further results
suggest that the optimum number of roadblock protein molecules per genome at which the
search time associated with these n TFs to locate their binding sites is minimum seems to
scales as mopt ∝ Lnα/2 where L is the sliding length of TFs on DNA whose maximum seems
to be such that L � 104 bps for the E. coli genome. Since the number of roadblock protein
molecules during the log-phase of the growth kinetics of E. coli is in the order of m ∼ 104,
our results suggest that the number of TFs in the combinatorial regulation of transcription of
a gene of interest inside the E. coli cell volume should be restricted to n ∼ 1.
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